

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/jdbdt-logo.png]JDBDT [http://jdbdt.org]

[image: _images/License-MIT-yellow.svg]License: MIT [http://jdbdt.org/MIT_License.html]
[image: _images/jdbdt.svg]Maven Central [https://search.maven.org/#search%7Cga%7C1%7Corg.jdbdt]
[image: _images/jdbdt1.svg]GitHub release [https://github.com/JDBDT/jdbdt/releases]
[image: _images/jdbdt.png]Travis build Status [https://travis-ci.org/JDBDT/jdbdt]
[image: _images/647d281hp1b8py3p.png]AppVeyor build status [https://ci.appveyor.com/project/edrdo/jdbdt]

JDBDT (Java Database Delta Testing) is a library for database test automation.

Visit http://jdbdt.org for reference.

License

JDBDT is open-source software under the terms of the
MIT License [http://jdbdt.org/MIT_License.html].

Versions prior to 0.12 were released under the terms of the Eclipse Public License v 1.0 [http://www.eclipse.org/legal/epl-v10.html].

Releases

JDBDT releases are available from Maven Central [http://search.maven.org/#search%7Cga%7C1%7Cjdbdt] and GitHub [https://github.com/JDBDT/jdbdt/releases].

Dependencies

JDBDT is self-contained (it uses the Java 8 SE API only).

Compilation

Requirements:

	Maven 3.0 or higher

	Java 8 compiler or higher

Commands:

 git clone git@github.com:JDBDT/jdbdt.git
 cd jdbdt
 mvn install

Change Log

1.4.x

Features:

	#68 - Improved CSV support [https://github.com/JDBDT/jdbdt/issues/68]

	#72 - CSV custom conversions per JDBC type [https://github.com/JDBDT/jdbdt/issues/72] (1.4.1)

Bug fixes:

	#71 - CSV bug fix for JDBC types mapped to BigDecimal [https://github.com/JDBDT/jdbdt/issues/71] (1.4.1)

Maintenance:

	Standard maintenance tasks (dependency updates, minor adjustments, etc)

	#69 - 1.4.1 [https://github.com/JDBDT/jdbdt/issues/69]

1.3.x

Features:

	#61 - CSV data set import / export [https://github.com/JDBDT/jdbdt/issues/61]

	#60 - getAutocommit() / setAutoCommit() convenience methods [https://github.com/JDBDT/jdbdt/issues/60]

	#56 - LIMIT support for QueryBuilder [https://github.com/JDBDT/jdbdt/issues/56]

1.2.x

Features:

	#47 - JDBDT.database() variants using javax.sql.DataSource [https://github.com/JDBDT/jdbdt/issues/47]

	#52 - Var-args method variants in JDBDT facade [https://github.com/JDBDT/jdbdt/issues/52]

Maintenance:

	Standard maintenance tasks (dependency updates, minor adjustments, etc)

	#51 - 1.2.0 [https://github.com/JDBDT/jdbdt/issues/51]

	#53 - 1.2.1 [https://github.com/JDBDT/jdbdt/issues/53]

	#54 - 1.2.2 [https://github.com/JDBDT/jdbdt/issues/54]

	#55 - 1.2.3 [https://github.com/JDBDT/jdbdt/issues/55]

	#59 - 1.2.4 [https://github.com/JDBDT/jdbdt/issues/59]

1.1.x

Features:

	#5 - Database exception logging [https://github.com/JDBDT/jdbdt/issues/5]

	#33 - SQL statement execution through JDBDT.execute [https://github.com/JDBDT/jdbdt/issues/33]

	#42 - Partial support for case-sensitive column names [https://github.com/JDBDT/jdbdt/issues/42]

	#43 - DataSet.toString() utility method [https://github.com/JDBDT/jdbdt/issues/43]

Maintenance:

	Standard maintenance tasks (dependency updates, minor adjustments, etc)

	#41 - 1.1.0 [https://github.com/JDBDT/jdbdt/issues/41]

	#44 - 1.1.1 [https://github.com/JDBDT/jdbdt/issues/44]

	#45 - 1.1.2 [https://github.com/JDBDT/jdbdt/issues/45]

1.0.x

API:

	#21 - Data sets can now be used for table updates/deletes. [https://github.com/JDBDT/jdbdt/issues/21]

	#25 - DataSource.getColumns() now available. [https://github.com/JDBDT/jdbdt/issues/25]

Continuous integration:

	#18 - Now using AppVeyor for Windows builds [https://github.com/JDBDT/jdbdt/issues/18]

	#19 - Travis CI: also MacOS builds [https://github.com/JDBDT/jdbdt/issues/19]

	#20 - Travis CI: also Java 9 builds [https://github.com/JDBDT/jdbdt/issues/20]

	#22 - Travis CI: using mysql service if available [https://github.com/JDBDT/jdbdt/issues/22]

	#23 - Travis CI: using postgresql service if available [https://github.com/JDBDT/jdbdt/issues/23]

	#24 - Travis CI: SonarQube add-on only for standard Linux build [https://github.com/JDBDT/jdbdt/issues/24]

	#28 - Fixed broken Java 9 build (1.0.1) [https://github.com/JDBDT/jdbdt/issues/28]

	#29 - Coverity scan during Travis build (1.0.1) [https://github.com/JDBDT/jdbdt/issues/29]

Site:

	#26 - Fixed anchor link location in web pages [https://github.com/JDBDT/jdbdt/issues/26]

	#27 - Start page is now a bit more appealing [https://github.com/JDBDT/jdbdt/issues/27]

Maintenance:

	#30 - Stopped using thread-local data (1.0.1) [https://github.com/JDBDT/jdbdt/issues/30]

	#36 - Transferred ownership to JDBDT organisation (1.0.5) [https://github.com/JDBDT/jdbdt/issues/36]

	Standard maintenance tasks (dependency updates, minor adjustments, etc)

	#31 - 1.0.2 [https://github.com/JDBDT/jdbdt/issues/31]

	#32 - 1.0.3 [https://github.com/JDBDT/jdbdt/issues/32]

	#34 - 1.0.4 [https://github.com/JDBDT/jdbdt/issues/34]

	#35 - 1.0.5 [https://github.com/JDBDT/jdbdt/issues/35]

	#38 - 1.0.6 [https://github.com/JDBDT/jdbdt/issues/38]

	#39 - 1.0.7 [https://github.com/JDBDT/jdbdt/issues/39]

	#40 - 1.0.8 [https://github.com/JDBDT/jdbdt/issues/40]

0.12

Slight API adjustments:

	#9 - API cleanup [https://github.com/JDBDT/jdbdt/issues/9]

	#15 - Let assertTableExists/DoesNotExist take the table name as argument [https://github.com/JDBDT/jdbdt/issues/15]

	#16 - Variant of drop operation supplying database handle and table name [https://github.com/JDBDT/jdbdt/issues/16]

Maintenance:

	#13 - Missing reference documentation in site for table dropping / table existence assertions [https://github.com/JDBDT/jdbdt/issues/13]

	#14 - Start using MIT license from 0.12 onwards [https://github.com/JDBDT/jdbdt/issues/14]

0.11

Features:

	#4 - Support for table dropping / table existence assertions [https://github.com/JDBDT/jdbdt/issues/4]

	#10 - Support for compressed log files (GZIP) [https://github.com/JDBDT/jdbdt/issues/10]

Maintenance:

	#6 - SonarQube integration during Travis build [https://github.com/JDBDT/jdbdt/issues/6]

	#7 - Adapt PostgreSQL test code (postgresql-embedded 2.x version features) [https://github.com/JDBDT/jdbdt/issues/7]

	#8 - Let Travis cache Maven repository [https://github.com/JDBDT/jdbdt/issues/8]

	#11 - Optionally run PIT mutation tests [https://github.com/JDBDT/jdbdt/issues/11]

0.10

	#3: ColumnFillerException should also extend JDBDTRuntimeException [https://github.com/JDBDT/jdbdt/issues/2]

	Misc. maintenance / refactoring / handling of SonarQube issues

0.9

	#2 - DataSource.setSnapshot() clears the contents of previous snapshot set [https://github.com/JDBDT/jdbdt/issues/2]

	Exception hiearchy revised: JDBDTRuntimeException now base class
for runtime exceptions, new UnsupportedOperationException and InternalErrorException classes.

	Misc. documentation/site adjustments.

0.8

	Builder pattern now more properly used for tables (TableBuilder).

	Improved handling of database errors.

0.7

	Database insertions now done in batch mode.

	Validation of savepoint support.

	Miscellaneous maintenance (code style, Javadoc, site).

0.6

	populateIfChanged, changed: new facade methods.

	Improved handling of reusable/non-reusable statements.

	Documentation adjustments.

0.5

	DataSetBuilder: inhibit re-seeding of PRNG, and compute PRNG seed from
data source columns.

	Small adjustements to web site.

	Other small adjustments.

0.4

	Logging improvements.

0.3

	Bug fixes & improvements when handling array data (e.g. BINARY) from/to database.

	A few documentation improvements.

0.2

	DataSet: head and tail methods respectively renamed to first and last.

	ColumnFillerException introduced to signal errors during column filler execution.

	Documentation improvements (site pages and Javadoc).

0.1

Initial release.

Compatibility

[bookmark: Drivers]

JDBC drivers

JDBDT is expected to work with any (sane) JDBC driver.
The JDBDT build currently tests integration with:

	Derby [https://db.apache.org/derby]

	H2 [http://www.h2database.com]

	HSQLDB [http://hsqldb.org]

	MySQL [http://mysql.com]

	PostgreSQL [http://postgresql.org]

	SQLite [https://www.sqlite.org] through xerial’s JDBC driver [https://github.com/xerial/sqlite-jdbc]

[bookmark: KnownIssues]

Known issues

[bookmark: KnownIssues_Derby]

Derby

Derby does not support LIMIT in association to SQL queries, hence
QueryBuilder.limit() should not be used.

[bookmark: KnownIssues_PostgreSQL]

PostgreSQL

Auto-commit off / Rollback on error

If auto-commit is turned off for the database connection
and a SQL statement raises an error
(e.g., an integrity constraint is violated during an insertion), PostgreSQL aborts the transaction and requires an explicit rollback execute further statements.
This is a well known issue in PostgreSQL (e.g., see here [http://postgresql.nabble.com/25P02-current-transaction-is-aborted-commands-ignored-until-end-of-transaction-block-td2174290.html]).
When using JDBDT, this may affect tests that validate invalid uses of a database by the SUT:

 try {
 // at this point connection has autocommit turned off
 call SUT, expecting it to throw a database exception, e.g.,
 insert data that violates a primary key
 fail("exception expected");
 }
 catch(SQLException e) {
 assertXXX(...); // e.g. assertUnchanged(...)
 }

The assertXXX JDBDT assertion above (or any other code that issues a database statement for that matter) will fail with the following message

org.postgresql.util.PSQLException:
 ERROR: current transaction is aborted, commands ignored until
 end of transaction block

A possible workaround is to issue a rollback statement before any further operations, i.e., before assertXXX in the example snippet above.

 [bookmark: KnownIssues_sqlite]

sqlite

Statement reuse

Statement reuse should be disabled for xerial’s JDBC driver for sqlite.

Table truncation is not supported

sqlite does not support TRUNCATE statements [https://www.sqlite.org/lang.html], so JDBDT.truncate will not work.

** LIMIT clause not supported **

Derby does not support LIMIT, so QueryBuilder.limit() will not work.

Database handles

A database handle encapsulates access to a database
connection.

 [bookmark: Creation]

Creation and teardown

A database handle is created using the database facade method, for instance
supplying as argument a database URL. Once the database handle is no longer required,
internal resources may be freed up using the teardown method.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import java.sql.Connection;
import java.sql.DriverManager;
...
// Creation
String dbURL = ...;
DB dbHandle = database("jdbc:myFaveDBEngine://myDB");
...
// Tear-down.
// The second parameter indicates if the underlying
// JDBDT connection should be closed or kept open.
// In this case we close the connection.
teardown(db, true);

 [bookmark: Configuration]

Configuration

Database handle options are defined by the DB.Option enumeration.
They may be enabled and disabled using enable and disable, respectively.
The available options relate to logging and a few other features discussed below.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.DB.Option;
...
DB db = database(...);
db.enable(Option.LOG_SETUP);

[bookmark: Logging]

Logging

For debugging purposes or report generation, trace output may be written to a log file.
The following logging options are defined in DB.Option

	LOG_ASSERTION_ERRORS: log failed assertions;

	LOG_ASSERTIONS: log all assertions (passed or failed);

	LOG_QUERIES: log the result of database queries;

	LOG_SETUP: log database setup operations (data set insertions and SQL setup commands);

	LOG_SNAPSHOTS: log database snapshots;

	LOG_DATABASE_EXCEPTIONS: log database exceptions.

At creation time, the LOG_ASSERTION_ERRORS and LOG_DATABASE_EXCEPTIONS options are enabled by default, and the log output is redirected to System.err.
Subsequently, logging options may be enabled/disabled using enable / disable
and the output log may be changed using setLog.
A call to enableFullLogging() enables all logging options at once.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Log;
...
DB db = database(...);

// Write log output to a file
db.setLog(new File("MyLog.jdbdt.xml"));

// Enable all logging options
db.enableFullLogging();

Note that if you use a .gz extension for log files, they will be GZIP-compressed and have a much smaller in size, e.g.,

db.setLog(new File("MyLog.jdbdt.xml.gz"));

[bookmark: StatementReuse]

Statement reuse

A database handle internally reuses java.sql.PreparedStatement objects
to avoid re-compiling SQL code, regardless of any statement pooling in place
for the JDBC driver in use, The scheme is enabled by default and
it should generally provide a little more efficiency and cause no problems.
For drivers that do not deal well with statement reuse, however,
the REUSE_STATEMENTS option should be disabled as follows:

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.DB.Option;
...
DB db = database(...);
db.disable(Option.REUSE_STATEMENTS)

Known issue: statement reuse should be disabled for
xerial’s JDBC driver for sqlite.
No problems were detected for all other JDBC drivers tested in the JDBDT build.

[bookmark: BatchUpdates]

Batch updates

The BATCH_UPDATES option indicates that database insertions should use the JDBC batch update mechanism, unless the JDBC driver in does not support this feature
(in this case the option will have no effect). The option is enabled by default.

[bookmark: CaseSensitiveColumnNames]

Case-sensitive column handling

The CASE_SENSITIVE_COLUMN_NAMES option indicates that column names should be handled in case-sensitive manner. This is required if you wish to use double-quotes with column names. If this option is set, the behavior will be more dependent on the database engine in use, so you should make sure you are aware of the engine’s policy regarding column names and be consistent with it.

This support is preliminary and has known problems with MySQL and PostgreSQL.

[bookmark: SummaryOfMethods]

Summary of API methods

JDBDT

	database(c) creates a handle for database connection c.

	database(url) creates a handle for the given database URL.

	database(url, user, pass) creates a handle for the given database URL, user name, and
password.

	teardown(db, closeConn) frees up internal resources used by db, and also closes the underlying database connection if closeConn == true.

DB

	getConnection() returns the connection associated to the handle.

	enable(o1, o2, ...) enables given options.

	disable(o1, o2, ...) disables given options.

	isEnabled(o) tests if option o is enabled.

	enableFullLogging() enables all logging options.

	setLog(out) redirects log output to out, a java.io.File or java.io.PrintStream.

	setMaximumBatchUpdateSize(n) sets n as the maximum number of operations in a batch update.

	getMaximumBatchUpdateSize() gets the current setting for the maximum number of operations in a batch update.

	setAutoCommit(enable) enables/disables the auto-commit mode for the underlying database connection.

	getAutoCommit() gets the auto-commit mode for the underlying database connection.

Assertions

JDBDT assertions allow you to verify the contents of a database:

	Delta (δ) assertions verify database state against user-specified
incremental changes, i.e., a database delta.

	More traditional state assertions verify that the database contents match a given data set.

	You may also perform complementary verifications, e.g., to compare data sets sets or
to check for the existence of database tables.

 [bookmark: DeltaAssertions]

Delta assertions

[bookmark: Delta_About]

δ-assertions ? What do you mean ?

δ-assertions state the expected incremental changes made to the database,
i.e., an expected database delta. The figure below illustrates the mechanism.
Starting from state S, called the reference snapshot, the SUT (software under test)
acts on the database, yielding a new database state, S’. S and S’
will have in common unchanged data U = S ∩ S’,
but will differ by δ = (O, N), where O = S − S’ is the old data in S no longer defined in S’, and N = S’ − S is the new data in S’.

[image: src/site/markdown/images/jdbdt-delta.png]Database delta

The programming pattern in line with this scheme is as follows:

Define reference snapshot(s) for the data source(s) of interest
theSUT.changesTheDB();
Call delta assertion method(s)

[bookmark: Snapshots]

Snapshots

A data source snapshot is a data set that is used as reference for subsequent delta
assertions. It can be defined in two ways for a data source s:

	A call to populate(data), s.t. data.getSource() == s and s is a Table instance
will set data as the snapshot for s. Since populate(data) resets the full table
contents exactly to data, by definition it will be safe to assume it as the correct database state.

	A call to takeSnaphot(source), regardless of the type of s (Table, Query)
will issue a fresh database query, and record the obtained data set as the snapshot for s.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DataSet;
import org.jdbdt.Table;
import org.jdbdt.DataSource;
...
// [1] Populate a table with some data.
Table t = ...;
DataSet data = data(t). ...;
populate(data); // --> 'data' becomes the reference snapshot

// [2] OR take a snapshot.
DataSource s = ... ; // 's' can be a Table or Query
takeSnapshot(s); // --> internally takes and records a snapshot

[bookmark: Assertion_Methods]

Assertion methods

The elementary δ-assertion method is assertDelta.
An assertDelta(oldData, newData) call,
where oldData and newData are data sets for the same data source s,
checks if the database delta is (oldData,newData), as follows:

	It issues a new database query for s.

	It computes the actual delta between the query’s result and the reference snapshot.

	It verifies if the expected and actual deltas match. If they do not match, DBAssertionError
is thrown. Details on mismatched data are additionally logged, unless the DB.Option.LogAssertionErrors option is disabled.

A number of other assertion methods are defined for convenience, all of which internally reduce to assertDelta, as follows:

	
			Method
			Description
			O
			N
	

	
			assertDelta([msg,] oldData, newData)
	 	Asserts that

 Database setup

Database setup

The contents of a database may be defined using setup methods
in the JDBDT facade. The functionality at stake comprises:

	the use of data sets to populate a table
but also for table row insertions / updates / deletions;

	cleaning up database tables;

	executing arbitrary SQL statements during setup;

	and setting and restoring save-points.

These functionalities are described below, along with a discussion of a few database setup patterns that can be implemented using these operations.

[bookmark: Populate]

Populating a table

The populate method may be used to populate a database table. Taking a data set for a table as argument, it first clears the table at stake, then
inserts the data set into the table. The supplied data set also sets a snapshot for subsequent delta assertions.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Table;
import org.jdbdt.DataSet;
...
DB db = ...
Table t = ...	

// Create a data set for t.
DataSet initialData = data(t) ...
 // or ... builder(t) for instance

populate(initialData);

The populateIfChanged method is a variant of populate that
executes conditionally, i.e., if the table contents are seen as unchanged, no operation takes place. This only happens if an assertUnchanged assertion previously succeeded,
and no intervening subsequent JDBDT setup or assertion methods were called for the table.

Illustration

static Table theTable ;
static DataSet initialStata;

@BeforeClass
public static void globalSetup() {
 theTable = ... ;
 initialData = data(theTable) ...
}

@Before
public void perTestSetup() {
 populateIfChanged(initialData);
}

@Test
public void test1() {
 theSUT.methodThatShouldNotChangeAnythin();
 assertUnchanged(theTable);
 // populateIfChanged will do nothing if the assertion succeeds
}

@Test
public void test1() {
 theSUT.methodThatPerformsChanges();
 assertXXX(...); // any other assertion method
 // populateIfChanged will repopulate the table again,
 // regardless of whether the assertion succeeds or not
}

More generally, you may query the changed status of data sources using the changed facade method, and use it to guide database setup if convenient.

Illustration

@Before
public void perTestSetup() {
 if (changed(theTable)) {
 populate(initialData); // re-populate
 ... // other necessary setup actions
 }
}

[bookmark: IUD]

Data set insertions, updates and deletes

Beyond populate, data sets may be used for table insertions, updates and deletes.

The insert method inserts a given data set onto a table, without deleting any previous contents (unlike populate that clears the table first).

Table t = ...	
DataSet additionalData = data(t) ...
insert(additionalData);

[bookmark: DataSetUpdate]
[bookmark: DataSetDelete]

The update and delete method respectively update and delete a data set in the database. They require that key columns are defined for the table at stake. The corresponding key values for each data set element will determine which rows are to be updated / deleted.

DB db = ...;
Table t = table("MY_TABLE")
 .columns(...)
 .key(...)
 .build(db);	
DataSet ds = ...

// Update
update(ds);

// Delete
delete(ds);

[bookmark: Clean]

Cleaning a table

Database data may be cleaned up using one of the following methods for a Table instance t:

	deleteAll(t) clears the entire contents of table t using a DELETE statement without an associated WHERE clause.

	deleteAllWhere(t, whereClause, [,args]) clears the contents of t using a DELETE
statement with the specified WHERE clause (whereClause) and optional WHERE clause arguments args.

	truncate(t) clears t using a TRUNCATE TABLE statement.

	drop(t) or drop(db, tableName) drops a table entirely.

Note: truncate may be faster than deleteAll, but the associated TRUNCATE TABLE statement
may not respect integrity constraints and has variable semantics
for different database engines (e.g., see here). Some engines do not support table truncation altogether (for instance SQLite).

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Table;
...
DB db = ...;
Table t = table("USERS")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);
...
// 1. Clear table using a DELETE statement.
deleteAll(t);

// 2. Delete all users whose login matches a certain filter
String loginFilter = ...;
deleteAll(t, "LOGIN LIKE ?", loginFilter);

// 3. Clear table using TRUNCATE.
truncate(t);

// 4. Drop the table entirely.
drop(t); // alternatively: drop(db, "USERS")

[bookmark: ExecuteSQL]

Executing arbitrary SQL statements during setup

The execute method lets you execute plain SQL statements.
This may useful for database setup, when the statement
has an effect for which the JDBDT API provides no equivalent operations.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
...
DB db = ... ;
arg1 = ... ;
arg2 = ... ;
execute(db, "UPDATE MY_TABLE SET X = ? WHERE Y = ?", arg1, arg2);

[bookmark: SaveAndRestore]

Saving and restoring database state

Database state may be saved and restored as follows per database handle db:

	A call to save(db) sets a database save-point. Internally, the
save-point is set java.sql.Connection.setSavepoint()
for the underlying database connection, which must have auto-commit
disabled.

	A call to restore(db) restores (rolls back) the database state to the
JDBDT save-point defined using the last call to save(db),
as long as there were no intervening database commits.

Note that that an unique one save-point is maintained per database handle,
and that there should be exactly one restore call per each save call.
These constraints try to ensure portable behavior across database engines.

In relation to save and restore, commit(db) is a shorthand for
db.getConnection().commit(). Such a call commits all database changes
and discards the JDBDT save-point (or any other save-point set for the database otherwise, e.g., by the SUT itself).

Illustration

import static org.jdbdt.JDBDT.*;
import java.sql.Connection;
import org.jdbdt.DB;
...
// Database handle ...
DB db = database(...);
// Disable auto-commit
db.getConnection().setAutoCommit(false);

// Set save-point
save(db);

// Exercise the SUT, then execute some assertions
letTheSUTWork();
assertXXX();

// Restore database state
restore(db);

[bookmark: Patterns]

Database setup patterns

A number of database test patterns can be implemented using JDBDT, as exemplified in the JDBDT tutorial. The code skeleton below (assuming JUnit [http://junit.org]-based tests)
illustrates the implementation of two patterns described in xunitpatterns.com [http://xunitpatterns.com]:

	Transaction Rollback Teardown [http://xunitpatterns.com/Transaction%20Rollback%20Teardown.html]:
changes to the database are rolled back at the end of each test, back to an initial configuration. In the illustration below, the reference database state is set once in oneTimeSetup (annotated with @BeforeClass). This state is respectively saved and restored, before and after each test executes,
in setSavePoint (annotated with @Before) and restoreSavePoint (annotated with @After).

	Table Truncation Teardown [http://xunitpatterns.com/Table%20Truncation%20Teardown.html]:
clean up each table on tear-down after conducting tests, as shown for oneTimeTeardown (annotated
with @AfterClass).

Illustration

import java.sql.Connection;
import org.junit.BeforeClass;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.After;
import org.junit.Test;

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.DataSet;
import org.jdbdt.Table;

public class MyTest {

 static DB myDB;
 static Table myTable1, myTable2, ... ;

 @BeforeClass
 public static void oneTimeSetup() {
 ...
 // Setup database handle
 myDB = database(...);

 // Define tables and corresponding initial data
 myTable1 = table(...) ...
 DataSet initialData1 = data(myTable1). ... ;
 populate(initialData1);

 // etc for myTable2 ...
 myTable2 = table(...) ...;
 ...

 // Ensure that auto-commit is off
 myDB.getConnection().setAutoCommit(false);
 }

 @AfterClass
 public void oneTimeTeardown() {
 // Alternatively use deleteAll ...
 truncate(myTable1);
 truncate(myTable2);
 ...
 teardown(myDB, true); // free resources and close DB connection
 }

 @Before
 public void setSavePoint() {
 save(myDB);
 }

 @After
 public void restoreSavePoint() {
 restore(myDB);
 }

 @Test
 public void test1() {
 // Specific setup for test
 ...
 // Exercise the SUT, perform assertions
 ...
 }

 @Test
 public void test2() { ... etc ... }
 ...

Summary of methods

[bookmark: MethodReference]

JDBDT

Operations using a data set data defined for a table t (t should correspond to data.getSource()):

	populate(data) sets data as the contents of a t.

	populateIfChanged(data) sets data as the contents of t, if t is perceived as having changed.

	insert(data) inserts data into t.

	delete(data) deletes data from t.

	update(data) uses data to update t.

Clean-up:

	delete(t) clear table t with a DELETE statement.

	deleteAll(t,w,a) deletes data from table t subject to WHERE clause w and optional
WHERE clause arguments.

	truncate(t) clear table t with a TRUNCATE TABLE statement.

Arbitrary SQL code execution:

	execute(db, sql, [arg1, ..., argN]): for database db execute sql statement with optional arguments arg1, ..., argN.

Save and restore:

	save(db) sets the JDBDT save-point;

	restore(db) restores database state back to the JDBDT save-point;

	commit(db) performs a database commit, discarding the JDBDT save-point (or any other save-point set);

 Data sets

Data sets

A DataSet object represents a collection of rows for a data source
that may be used for database setup or assertions.

[bookmark: Creation]

Creation

The examples below define data sets for a table (Table) object,
but the definition of data sets works similarly for
queries (Query).

[bookmark: Creation.Plain]

Plain definition

In the simplest manner,
DataSet objects are created through the data JDBDT facade method,
typically followed by a chained sequence of calls.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DataSet;
import org.jdbdt.DB;
import org.jdbdt.Table;
...
DB db = ...;
Table t = table("USERS")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);

DataSet users
 = data(t)
	.row(0, "root", "Root User", "god", null)
 .row(101, "john", "John Doe", "justDoeIt", Date.valueOf("2014-07-12"))
 .row(102, "harry", "Harry H", "meta", Date.valueOf("2016-01-01"))
 .row(103, "guest", "Guest User", "welcome", Date.valueOf("2016-01-02"));

[bookmark: Creation.Typed]

Typed data sets

TypedDataSet is a typed extension of DataSet. It allows for a simple
form of (one-way) object-relational mapping through conversion functions expressed
by the Conversion interface. A Conversion instance
defines a mapping from objects to rows, where each row is expressed as an array
of column values.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.TypedDataSet;
import org.jdbdt.DB;
import org.jdbdt.Table;
...
DB db = ...;
Table t = table("USERS")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);

Conversion<User> conv = u -> new Object[] {
 u.getID(),
 u.getLogin(),
 u.getPassword(),
 u.getCreationDate()
 };
User root = ..., john = ..., harry = ..., guest = ...;
List<User> listOfOtherUsers ...;

TypedDataSet<User> userSet
 = data(t, conv)
	.row(root)
	.rows(john, harry, guest)
	.rows(listOfOtherUsers);

[bookmark: Creation.Builder]

Data set builders

A DataSetBuilder instance can be used to define or augment a data set
with the aid of expressive column filler methods. For instance,
there are column fillers for value sequences or pseudo-random values.
Many of the column fillers may be defined concisely, for example
making use of lambda expressions, arrays, or collections.

The builder facade method creates a builder for a fresh data set and
the DataSet.build method lets you add rows to a previously defined data
set.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Table;
import org.jdbdt.DataSet;
...
DB db = ...;
Table t = table("USERS")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);	

// Create a fresh data set with 9 rows
DataSet data =
 builder(t)
 .sequence("ID", 1) // 1, 2, 3, ...
 .sequence("LOGIN", "harry", "mark", "john")
 .sequence("NAME", "Harry H", "Mark M", "John J")
 .sequence("PASSWORD", i -> "password " + i , 1)
 .random("CREATED", Date.valueOf("2015-01-01"), Date.valueOf("2015-12-31"))
 .generate(3) // generate 3 rows,
 .sequence("LOGIN", i -> "guest_" + i, 4) // "user_4", "user_5", ...
 .sequence("NAME", i -> "Guest User " + i, 4) // "Guest User 4", ...
 .value("password", "samePasswordForAllGuests")
 .generate(6) // 6 more rows keeping ID sequence and CREATED random filler
 .data();

// Add 500 more rows to the data set
data.build()
 .sequence("ID", 1000) // 1000, 1001, ...
 .sequence("LOGIN", i -> "anotherUser" + i, 1000)
 .sequence("NAME", i -> "Yet Another User" + i, 1000)
 .random("PASSWORD", "aeiou", "qwerty", "12345", "pass is the password")
 .nullValue("CREATED") // set to NULL
 .generate(500);

[bookmark: ReadOnly]

Read-only data sets

A data set is marked read-only when defined as a database snapshot.
Any attempt to modify it subsequently will cause an InvalidOperationException.

[bookmark: CSV]

Importing / exporting data sets from/to CSV format

Data sets can be imported / exported from/to CSV format.
The format supported complies with RFC-4180 [https://www.ietf.org/rfc/rfc4180.txt] except for the possibility of line breaks or carriage returns within escaped sequences.
The CSV separator (comma by default) and escape (double-quote by default) characters
are configurable as well as other aspects.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.CSV;
import org.jdbdt.DB;
import org.jdbdt.Table;
import org.jdbdt.DataSet;
...
DB db = ...;
Table table = table("USERS")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);
CSV.Format format = new CSV.Format()
 .separator('\t')
 .useReadConversions();
DataSet ds = read(table, format, new File("mydata.csv"));
...
write(ds, format, new File("mydata2.csv));

[bookmark: SummaryOfMethods]

Summary of API methods

JDBDT

Object creation - for a data source s:

	data(s) creates a new data set.

	data(s, c) creates a new typed data set with conversion function c.

	builder(s) creates a data set builder with an underlying fresh data set.

	empty(s) returns an empty & read-only data set that is unique for s.

CSV:

	read(s,f,inp): reads a data set for data source s with CSV format f from file inp.

	write(ds,f,out): writes data set ds using CSV format f onto file out.

Debugging:

	dump(s, out) dump database contents of data source s to stream/file out.

	dump(data, out) dump the contents of data set data to stream/file out.

DataSet, TypedDataSet

Properties:

	size() returns the number of rows.

	isEmpty() indicates if the data set is empty.

	isReadOnly() indicates if the data set is read-only.

	getDataSource() returns the data source instance for the data set.

	toString() returns a textual representation of the data set (see also dump above).

Mutators:

	row and rows methods add rows to the data set (see examples above).

	build() creates a new data set builder backed up by the data set (see example above).

	add(other) adds all rows from other to the data set.

	setReadOnly() sets the data set as read-only.

Utility methods (all static):

	copyOf(data) returns a new data set that has the same rows as data.

	join(data1, data2, ...,) returns a new data set that contains all the rows in data1, data2, …

	subset(data, index, n) returns a new data set containing n rows of data starting from the index-th row.

	singleton(data, i) returns a new data set containing only the index-th row in data.

	first(data, n) returns a new data set containing the first n rows of data.

	last(data, n) returns a new data set containing the last n rows of data.

DataSetBuilder

	data() returns the underlying data set.

	generate(n) adds n rows to the underlying data set based on the current column filler settings.

	value(column, v) sets a constant filler with value v for column.

	nullValue(column) sets a NULL value filler for column.

	remainingColumnsNull() sets the NULL value filler for all remaining columns

	allColumnsNull() sets the NULL value filler for all columns

	sequence(column, ...) defines a sequence fillers for column (several method variants).

	random(column, ...) defines a pseudo-random filler for column (several method variants).

	set(column, filler) defines a custom column filler for column.

 Data sources

Data sources

DataSource objects represent tables and queries that are used for database
setup or assertions.

[bookmark: Table]

Tables

[bookmark: Table_Builder]

Using table builders

Tables are represented by Table, a subclass of DataSource. A table is created
using a builder (TableBuilder), as returned by the table facade method.
In association, the columns should be used to specify the table columns of interest,
and the build method to build the actual Table object in association to a database handle.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Table;
...
DB db = ...;
Table userTable = table("USER")
 .columns("LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);

[bookmark: Table_Key]

Key columns for a table

In addition, if you wish to perform updates and deletes using data sets, key can be used to define the columns that form
the table’s primary key (or that in some other form identify each database row uniquely)

Illustration

 Table userTable = table("USER")
 .columns("LOGIN", "NAME", "PASSWORD", "CREATED")
 .key("LOGIN")
 .build(db);

[bookmark: Query]

Queries

Queries are represented by Query, a subclass of DataSource.
A Query object can be created from a raw SQL statements or using a QueryBuilder.

[bookmark: RawQuery]

Definition from raw SQL

The query facade method may be used to define a query using raw SQL.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Query;
...
DB db = ...;
// Query user login and name by id.
int idArgument = ...;
Query q = query(db, "SELECT LOGIN, NAME FROM USER WHERE ID = ?", idArgument);

[bookmark: QueryBuilder]

Definition using QueryBuilder

QueryBuilder objects can be used to define queries programmatically.
The select facade method creates a query builder that can be parameterized
using a chained sequence of calls. A final call to build in
such a sequence creates a Query object for a given database.
The parameterization methods are the following:

	from: defines the FROM clause;

	where: defines a WHERE clause;

	distinct: defines a DISTINCT modifier for the query;

	groupBy: defines a GROUP BY clause;

	having: defines a HAVING clause;

	orderBy: defines an ORDER BY clause;

	limit: defines a LIMIT clause;

	arguments: supply arguments for the query.

Note to orderBy: database assertions are insensitive
to the order of query results, but the use of orderBy may make it easier to inspect
logs in some cases.

Illustration

import static org.jdbdt.JDBDT.*;
import org.jdbdt.DB;
import org.jdbdt.Query;
...
DB db = ...;

// [1] Query user login and name by id
int userId = ...;
Query q1 = select("LOGIN", "NAME")
 .from("USER")
 .where("ID = ?")
 .arguments(userId)
 .build(db);

// [2] Query distinct passwords in use
Query q2 = select("PASSWORD")
 .distinct()
 .from("USER")
 .orderBy("PASSWORD")
 .build(db);

// [3] Get passwords that are used by more than one user and their count.
Query q3 = select("PASSWORD", "COUNT(*)")
 .from("USER")
 .groupBy("PASSWORD")
 .having("COUNT(*) > 1")
 .build(db);

// [4] Get pairs of users that have the same password.
Query q4 = select("u1.LOGIN", "u2.LOGIN")
 .from("USER u1", "USER u2")
 .where("u1.LOGIN <> u2.LOGIN AND u1.PASSWORD = u2.PASSWORD")
 .build(db);

[bookmark: SummaryOfMethods]

Summary of API methods

JDBDT

	table(name) creates a new TableBuilder with table name set to name.

	query(db, sql [,args]) creates a new Query data source from SQL code.

	select(cols) creates a new QueryBuilder with columns set to cols.

DataSource

	getDB() returns the database handle.

	getSQLForQuery() yields the SQL code used for querying the database.

	getColumnCount() returns the number of columns for the data source.

	getColumns() returns the list of columns.

	getColumnName(i) returns the name of the column with index i.

Table

	getName() returns the table name.

TableBuilder

	columns(cols) set the table columns to cols.

	key(cols) set the key columns to consider (optional).

	name(t) sets the table name to t.

	build(db) builds the desired Table for database db.

QueryBuilder

	columns(cols) sets the query columns to cols.

	from, where, distinct, groupBy, having, orderBy, limit, arguments: query parameterization methods (see above).

	build(db) builds the desired Query for database db.

 The JDBDT facade

The JDBDT facade

The org.jdbdt.JDBDT class is the facade for the JDBDT API,
providing the core interface methods for database setup, verification,
and API object creation.

[bookmark: StaticImport]

Static import

The following static import
may be convenient to refer to the API methods concisely.

import static org.jdbdt.JDBDT.*;

[bookmark: Overview]

Overview of functionality

(browse Javadoc instead)

 	
			Functionality
			Summary
			Facade methods
			Related API types
	

	
 		
 	 	Database handles
 	
 		
 	 	A database handle mediates access to a database connection.
 	
			
		 	database

		 	teardown

		
			
			DB
		

	
 		
 		Data sources
 	
 		
 	 	A data source represents a database table or query.
 	
			
			query

			select

			table

		
			
			DataSource

			Table

			TableBuilder

			Query

			QueryBuilder
			
		

	
 		
 		Data sets
 	
 		
 	 	A data set represents a collection of rows.
 	
			
			builder

			data

			dump

			empty

			read

			write

		
			
		 Conversion

		 ColumnFiller

		 CSV.Format

			DataSet

			DataSetBuilder

			TypedDataSet

		

 		
 		Database setup
 	
 		
 	 	Setup methods can be used to define the contents of a database.
 	
			
		 changed

			commit

			delete

			deleteAll

			deleteAllWhere

			drop

			execute

			insert

			populate

			populateIfChanged

			restore

			save

			truncate

			update

		
			
		 DataSet

		 DB

			Table

		

 		
 		Database assertions
 	
 		
 	 	Assertion methods can be used to verify the contents of a database
 	 	or compare data sets.
 	
			
			assertDeleted

			assertDelta

			assertEmpty

			assertEquals

			assertInserted

			assertState

			assertTableDoesNotExist

			assertTableExists

			assertUnchanged

			takeSnapshot

		
			
			DBAssertionError

			DataSet

			DataSource

		

 Inception

Inception

JDBDT is developed and maintained by Eduardo R. B. Marques [http://www.dcc.fc.up.pt/%7Eedrdo].

The author felt the need of a novel software library
for the automation of database setup and validation in test code,
in alternative to existing ones such as DBUnit [http://dbunit.sourceforge.net] or DBSetup [http://dbsetup.ninja-squad.com],
while teaching a software testing course [https://moodle-arquivo.ciencias.ulisboa.pt/1415/course/view.php?id=1980] at DI/FCUL [http://www.di.fc.ul.pt].

An early prototype of JDBDT was used by DI/FCUL [http://www.di.fc.ul.pt] students during 2015. The library subsequently evolved onto a more mature form and was released as open-source software in 2016.

 Logging format

Logging format

An XML format is used for JDBDT log files and for the output of calls to JDBDT.dump.

[bookmark: Generic]

Generic format

Every JDBDT log message is defined by a jdbdt-log-message XML node.
For each node of this type:

	the version attribute
identifies the JDBDT version in use;

	the time attribute indicates the time of the message;

	jdbdt-log-message/context identifies the client call site
related to the message (context/caller) and the API method that was invoked (context/api-method) -
for both of these, there is information regarding the class, method, file, and line number
(class, method, file, line);

	jdbdt-log-message/data-source node describes the data source associated to the message, if any - in that case, it informs the source type (type)
the SQL code that is executed on each query to the data source (sql), plus
what are the columns for the data source at stake (columns), where
each column (columns/column) is detailed in terms of its index (index), label (label),
and SQL type (sql-type).

Illustration

<jdbdt-log-message time="..." version="...">
 <context>
 <caller>
 <class>org.foo.MyTestClass</class>
 <method>myTestMethod</method>
 <file>MyTest.java</file>
 <line>999</line>
 </caller>
 <api-method>
 <class>org.jdbdt.JDBDT</class>
 <method>dump</method>
 <file>JDBDT.java</file>
 <line>541</line>
 </api-method>
 </context>
 <data-source type="Table">
 <columns count="4">
 <column index="1" label="LOGIN" sql-type="VARCHAR"/>
 <column index="2" label="NAME" sql-type="VARCHAR"/>
 <column index="3" label="PASSWORD" sql-type="VARCHAR"/>
 <column index="4" label="CREATED" sql-type="DATE"/>
 </columns>
 <sql><![CDATA[SELECT login, name, password, created FROM Users]]></sql>
 </data-source>

[bookmark: DataSets]

Data sets

A data-set node displays the contents of a data set that associates
to some JDBDT operation (e.g., populate, dump).
All rows are detailed in data-set/rows. For each column in a row,
a column node indicates the column value as well as its
column label (label attribute) and Java type (java-type).

Illustration

 <data-set>
 <rows count="4">
 <row>
	 <column java-type="java.lang.String" label="LOGIN">root</column>
 <column java-type="java.lang.String" label="NAME">Root User</column>
 <column java-type="java.lang.String" label="PASSWORD">I like JDBDT</column>
 <column java-type="java.sql.Date" label="CREATED">2015-01-01</column>
 </row>
 <row>
	 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus You Know Who</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2014-10-31</column>
 </row>
 <row>
	 <column java-type="java.lang.String" label="LOGIN">steve</column>
 <column java-type="java.lang.String" label="NAME">Steve You Know Who</column>
 <column java-type="java.lang.String" label="PASSWORD">apple</column>
 <column java-type="java.sql.Date" label="CREATED">2010-05-30</column>
 </row>
 <row>
	 <column java-type="java.lang.String" label="LOGIN">bill</column>
 <column java-type="java.lang.String" label="NAME">Bill You Know Who</column>
 <column java-type="java.lang.String" label="PASSWORD">windows</column>
 <column java-type="java.sql.Date" label="CREATED">2016-01-01</column>
 </row>
 </rows>
 </data-set>

[bookmark: StateAndDataSetAssertions]

State and data set assertions

An assertion node refers to a database state assertion or a data set assertion. It comprises:

	assertion/expected in all cases, detailing the data set
that is either expected for the database state or
for comparison with a given data set.

	assertion/errors if the assertion failed, where
assertion/errors/expected and assertion/errors/actual identify
the mismatch between the expected and actual data sets (matched rows
are not listed).

Illustration

In the fragment below, the assertion error relates to a mismatch between
the expected and actual values of the CREATED column
for the linus “user” row, 2015-01-01 (expected) versus 2016-01-01 (actual).
The steve and bill “users” were matched.

<assertion>
 <expected count="3">
 <row>
 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus Torvalds</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2015-01-01</column>
 </row>
 <row>
 <column java-type="java.lang.String" label="LOGIN">steve</column>
 <column java-type="java.lang.String" label="NAME">Steve Jobs</column>
 <column java-type="java.lang.String" label="PASSWORD">macos</column>
 <column java-type="java.sql.Date" label="CREATED">2015-12-31</column>
 </row>
 <row>
 <column java-type="java.lang.String" label="LOGIN">bill</column>
 <column java-type="java.lang.String" label="NAME">Bill Gates</column>
 <column java-type="java.lang.String" label="PASSWORD">windows</column>
 <column java-type="java.sql.Date" label="CREATED">2015-09-12</column>
 </row>
 </rows>
 <errors>
 <expected count="1">
 <row>
 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus Torvalds</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2015-01-01</column>
 </row>
 </expected>
 <actual count="1">
 <row>
 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus Torvalds</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2016-01-01</column>
 </row>
 </expected>
 </errors>
</assertion>

[bookmark: DeltaAssertions]

Delta assertions

A delta-assertion node refers to a database delta assertion. For an assertion
where the expected delta is δ = (O, N) and the actual delta
is δ’ = (O’, N’):

	assertion/expected/old-data list the entire O data set;

	assertion/expected/new-data list the entire N data set;

	errors/old-data list the mismatch between O
(errors/old-data/expected) and O’ (errors/old-data/actual);

	errors/new-data list the mismatch between N
(errors/new-data/expected) and N’ (errors/new-data/actual);

Note that, as for state assertions,
errors lists only rows that caused the assertion to fail, i.e.,
matched rows are not listed.

Illustration

The fragment below illustrates a failed delta assertion, where no database
changes were expected. Both expected/old-data and expected/new-data are empty,
i.e., O = N = ∅, as in a call to assertUnchanged.
The error at stake, identified in errors/old-data/actual,
relates to the fact that the entry for “user” linus was removed.

<delta-assertion>
 <expected>
 <old-data count="0"/>
 <new-data count="0"/>
 </expected>
 <errors>
 	<old-data>
 <expected count="0"/>
 <actual count="1">
 <row>
 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus Torvalds</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2015-01-01</column>
 </row>
 </actual>
 </old-data>
 <new-data>
 <expected count="0"/>
 <actual count="0"/>
 </new-data>
 </errors>
</delta-assertion>

Database exceptions

A database-exception node refers to the stack trace of an SQLException thrown by the database engine during the execution of a JDBDT operation.

Illustration

<database-exception><![CDATA[
java.sql.SQLSyntaxErrorException: user lacks privilege or object not found: XXX in statement [SELECT XXX FROM Users]
 at org.hsqldb.jdbc.JDBCUtil.sqlException(Unknown Source)
 at org.hsqldb.jdbc.JDBCUtil.sqlException(Unknown Source)
 at org.hsqldb.jdbc.JDBCPreparedStatement.<init>(Unknown Source)
 at org.hsqldb.jdbc.JDBCConnection.prepareStatement(Unknown Source)
 at org.jdbdt.DB.compile(DB.java:276)
... [etc]
]]></database-exception>

 The MIT License

The MIT License

Copyright (c) Eduardo R. B. Marques

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Tutorial

Tutorial

This tutorial will help you understand the essential features of JDBDT.

[bookmark: TheCode]

Tutorial code

GitHub repository [bookmark: TheCode.GetIt]

Get the tutorial code from GitHub [http://github.com/JDBDT/jdbdt-tutorial]:

git clone git@github.com:JDBDT/jdbdt-tutorial.git

[bookmark: TheCode.MavenProject]

Maven project overview

The code is organized as a Maven [http://maven.apache.org] project, and comprises the following artifacts:

	An SQL table creation script for a table called USERS
(src/main/resources/tableCreation.sql).

	User, a POJO class to store user data (src/main/java/org/jdbdt/tutorial/User.java)

	UserDAO, a data-access object (DAO) class for user data (src/main/java/org/jdbdt/tutorial/UserDAO.java).

	UserDAOTest, a class containing JUnit [http://junit.org] tests for UserDAO, making use of JDBDT (src/test/java/org/jdbdt/tutorial/UserDAOTest.java).
This class will be our main point of interest.

	Subclasses of UserDAOTest, that merely configure the database driver to use.
There are three such classes DerbyTest, H2Test, HSQLDBTest (in src/test/java/org/jdbdt/tutorial). As their name indicates, they make use of JDBC drivers for Apache Derby [http://db.apache.org/derby], H2 [http://h2database.com], and HSQLDB [http://hsqldb.org].

	A JUnit test suite, AllTests, allowing tests in all classes mentioned above to be executed at once (src/test/java/org/jdbdt/tutorial/AllTests.java).

[bookmark: TheCode.RunningTheTests]

Running the tests

In the command line go to the root folder of the project and type mvn test to execute the AllTests suite.

Otherwise, import the project using a Maven-compatible IDE and run the tests from the IDE environment.
Eclipse [http://eclipse.org] users will find that a .project file is already in the root folder.

[bookmark: TheCode.TheTestSubject]

The test subject

The SUT of the tutorial is the UserDAO class. Objects of this kind
works as a data-access object for a database table called USERS,
whose Java representation is given by the POJO User class.
These items are described below.

The USERS table

The USERS table represents user data in the form of a numeric id (primary key), a unique login, a name, a password, a role, and a creation date. The code for table creation below should be self-explanatory. A sequence or identity column setting could be associated to the ID column, but we keep the example as simple as possible to ensure portability for different database engines. Likewise, for ROLE, a reference table or an ENUM type (as supported by some engines) could be used alternatively.

CREATE TABLE USERS
(
	ID INTEGER PRIMARY KEY NOT NULL ,
	LOGIN VARCHAR(16) UNIQUE NOT NULL,
	NAME VARCHAR(32),
	PASSWORD VARCHAR(32) NOT NULL,
	ROLE VARCHAR(7) DEFAULT 'REGULAR' NOT NULL
	 CHECK (ROLE IN ('ADMIN', 'REGULAR', 'GUEST')),
	CREATED DATE NOT NULL
)

The User class

The User class is a POJO class with getter and setter methods for each of the user attributes (e.g.,getId and setId). Additionally, it overrides a number of java.lang.Object methods for convenience of use in test code (e.g., equals).

The UserDAO class

The UserDAO class defines methods for interfacing with the USERS table
using User objects. The methods are in correspondence to database operations
for user insertion, update, removal and retrieval.

	insertUser(u): inserts a new user.

	updateUser(u): update an existing user.

	deleteUser(u): delete a user.

	deleteAllUsers(): delete all users.

	getUser(id): get user data by id.

	getUser(login): get user data by login.

	getAllUsers(): get a list of all users.

	getUsers(r): get a list of all users with a given role.

[bookmark: TheTestCode]

Test code / use of JDBDT

[bookmark: TheTestCode.Imports]

JDBDT import statements

The test code of UserDAOTest makes use of JDBDT to setup and validate the
contents of the database. You should notice the following JDBDT imports:

import static org.jdbdt.JDBDT.*;
import org.jdbdt.Conversion;
import org.jdbdt.DB;
import org.jdbdt.DataSet;
import org.jdbdt.Table;

The static import (the very first one) relates to methods in the JDBDT facade that exposes the core JDBDT API.

[bookmark: TheTestCode.SetupAndTeardown]

Database setup and tear-down

Initial setup

To setup the database connection and define the initial contents of the database,
each subclass of UserDAOTest defines a globalSetup
method that is executed once before all tests, since it is marked with the @BeforeClass JUnit annotation; the method calls UserDAO.globalSetup(dbDriverClass,dbURL) in the parent class, parameterizing the JDBC driver class to load and the database URL to use for the actual setup. For instance, DerbyTest contains:

private static final String
	JDBC_DRIVER_CLASS = "org.apache.derby.jdbc.EmbeddedDriver";
private static final String
	DATABASE_URL = "jdbc:derby:./db/derby/jdbdtTutorial;create=true";
	
@BeforeClass
public static void globalSetup() throws Throwable {
 globalSetup(JDBC_DRIVER_CLASS, DATABASE_URL);
}

This layout is merely a convenient one for the purpose of testing multiple JDBC drivers in the tutorial code. In the core code at UserDAOTest we have:

protected static
void globalSetup(String jdbcDriverClass, String databaseURL) ... {
 ...
}

that proceeds in the following steps:

	We first ensure that the JDBC driver class is loaded.

 // Load JDBC driver class
 Class.forName(jdbcDriverClass);

	The JDBDT database handle is then created.

 // Create database handle
 theDB = database(databaseURL);

	So is the UserDAO instance, our SUT, along with the USERS table
(JDBDT provides no facilities to create the table itself) …

 // Create DAO and in turn let it create USERS table
 theDAO = new UserDAO(theDB.getConnection());
 theDAO.createTable();

	… and a JDBDT Table data source for the USERS table.

 // Create table data source.
 theTable = table("USERS")
 .columns("ID",
 "LOGIN",
 "NAME",
 "PASSWORD",
 "ROLE",
 "CREATED")
 .build(theDB);

	… plus, finally, the data set for the initial contents of the database. The strategy in this case is to use a data set builder.
We populate the database with 1 ADMIN user, 3 REGULAR users, and 2 GUEST
users. The data set builder methods allow a succinct definition of the data, as follows:

 // Define data set for populating the database
 theInitialData
 = builder(theTable)
 .sequence("ID", 0)
 .value("LOGIN", "root")
 .sequence("PASSWORD", i -> "pass" + i)
 .nullValue("NAME")
 .value("CREATED", FIXED_DATE)
 .value("ROLE", ADMIN)
 .generate(1)
 .sequence("LOGIN", "alice", "bob", "charles")
 .sequence("NAME", "Alice", "Bob", "Charles")
 .value("ROLE", REGULAR)
 .generate(3)
 .sequence("LOGIN", i -> "guest" + i, 1)
 .sequence("NAME", i -> "Guest User " + i, 1)
 .value("ROLE", GUEST)
 .generate(2)
 .data();
 // dump(theInitialData, System.err);

Uncomment the last statement above, the call to dump, if you wish to see some debug output sent to System.err listing the data set.
The following table summarizes the created entries (note that FIXED_DATE equals 2016-01-01):

	
			
			ID
		
			
		 	LOGIN
		
	 	
		 	NAME
		
			
		 	PASSWORD
		
			
		 	ROLE
		
			
		 	CREATED
		
	

	
			
			0
		
			
		 	root
		
	 	
		 	NULL
		
			
		 	pass0
		
			
		 	ADMIN
		
			
		 	2016-01-01
		
	

	
			
			1
		
			
		 	alice
		
	 	
		 	Alice
		
			
		 	pass1
		
			
		 	REGULAR
		
			
		 	2016-01-01
		
	

	
			
			2
		
			
		 	bob
		
	 	
		 	Bob
		
			
		 	pass2
		
			
		 	REGULAR
		
			
		 	2016-01-01
		
	

	
			
			3
		
			
		 	charles
		
	 	
		 	Charles
		
			
		 	pass3
		
			
		 	REGULAR
		
			
		 	2016-01-01
		
	

	
			
			4
		
			
		 	guest1
		
	 	
		 	Guest User 1
		
			
		 	pass4
		
			
		 	GUEST
		
			
		 	2016-01-01
		
	

	
			
			5
		
			
		 	guest2
		
	 	
		 	Guest User 2
		
			
		 	pass5
		
			
		 	GUEST
		
			
		 	2016-01-01
		
	

	The data set of the previous step, theInitialData, is used to populate the database table.

 // Populate database using the built data set
 populate(theInitialData);

	The final step disables auto-commit for the JDBC connection,
a prerequisite for using JDBDT save-points, that are discussed later in this tutorial.

 // Set auto-commit off (to allow for save-points)
 theDB.getConnection().setAutoCommit(false);

Test teardown

The globalTeardown method of UserDAOTest, annotated with JUnit’s @AfterClass annotation, is executed after all tests are done. Its purpose is to leave the test database in a clean state and freeing up any resources.

@AfterClass
public static void globalTeardown() {
 truncate(theTable);
 teardown(theDB, true);
}

The truncate(theTable) statement truncates the USERS table.
Then teardown(theDB, true) frees up any internal resources used by the database handle and closes the underlying database connection.

Per-test setup and tear-down

In UserDAOTest, the saveState and restoreState methods are executed respectively before and after each test, in line with the @Before and @After JUnit annotations in each method below. Their purpose is to make sure each test starts with the same initial database state
(described earlier),
making use of JDBDT save-points.

@Before
public void saveState() {
 // Set save point
 save(theDB);
}

@After
public void restoreState() {
 // Restore state to save point
 restore(theDB);
}

The save(theDB) call creates a database save-point, beginning
a new database transaction. In symmetry, the restore(theDB) call rolls back any database
changes made by the current transaction to the JDBDT save-point.
Note also that, for portability reasons, only one save-point is maintained per database handle and that there must be exactly one call to restore per each call to save.

This setup relies on disabling auto-commit for the database in globalSetup
as described before,
and also that UserDAO does not issue a database commit
(that would make any changes permanent and terminate the transaction started with save(theDB)).

[bookmark: TheTestCode.DBValidation]

Tests and assertions

The tests in UserDAOTest, marked with the JUnit @Test annotation, validate the different methods
in UserDAO, using JDBDT assertions.
These take form as delta assertions, state assertions, or plain data set assertions.

Before discussing test methods and assertions, we first make note of an auxiliary method in UserDAOTest called toDataSet, that is used throughout the rest of the code. It provides a shorthand to create a (typed) data set from a single User instance. The conversion from User instances to row format is defined by the CONVERSION function (defined as a lambda expression):

private static final Conversion<User> CONVERSION =
 u -> new Object[] {
 u.getId(),
 u.getLogin(),
 u.getName(),
 u.getPassword(),
 u.getRole().toString(),
 u.getCreated()
 };

static DataSet toDataSet(User u) {
 return data(theTable, CONVERSION).row(u);
}

Delta assertions [bookmark: TheTestCode.DBValidation.DeltaAssertions]

As an example of a delta assertion, consider testNonExistingUserInsertion:

@Test
public void testNonExistingUserInsertion() throws SQLException {
 User u = nonExistingUser();
 theDAO.insertUser(u);
 assertInserted("DB change", toDataSet(u));
}

The code tests whether a new user is correctly inserted in the database via UserDAO.insertUser.
It proceeds by first calling nonExistingUser(), an auxiliary method to creates a User instance that does not correspond to any entry in the USERS table.
Then it calls theDAO.insertUser(u) to insert the user.
To validate the database change assertInserted, a delta assertion method, is used. The assertion specifies that the expected state should differ only by the addition of the new user, i.e., toDataSet(u). A fresh database query is issued for the USERS table, and the delta is verified against the database snapshot defined in the initial setup of globalSetup, more precisely the populate(theInitialData) step in that method.

State assertions

Now consider testNonExistingUserInsertionVariant, an alternative test method with the same purpose as testNonExistingUserInsertion, but that uses a state assertion instead of a delta assertion:

@Test
public void testNonExistingUserInsertionVariant() throws SQLException {
 User u = nonExistingUser();
 theDAO.insertUser(u);
 DataSet expected = DataSet.join(theInitialData, toDataSet(u));
 assertState("DB state", expected);

}

The assertion method is assertState, that takes the data set that is expected
to match the current database state. The expected data set is formed by
theInitialData, the data set defined in globalSetup, joined with toDataSet(u).

Plain data set assertions

Plain data set assertions match the contents of two data set instances, via the assertEquals method
(this should not be confused with the JUnit assertion method variants with the same name).For instance, the method is used in testGetAllUsers:

@Test
public void testGetAllUsers() throws SQLException {
 List<User> list = theDAO.getAllUsers();
 DataSet expected = theInitialData;
 DataSet actual = data(theTable, CONVERSION).rows(list);
 assertEquals("User list", expected, actual);
 assertUnchanged("No DB changes", theTable);
}

Note: in addition to verifying the result of getAllUsers through assertEquals,
the test code above also validates that getAllUsers did not change
the USERS table through the call to assertUnchanged (a delta assertion method).
This assertion provides an extra guarantee on the functionality of getAllUsers.

Inspecting assertion errors

When an assertion fails, DBAssertionError is thrown by JDBDT.
Additionally, error information may be logged to a file or output stream in an XML format. By default, assertion errors will be logged to System.err. Consider for instance testExistingUserDelete in UserDAOTest:

@Test
public void testExistingUserDelete() throws SQLException {
 User u = anExistingUser(); // -> change to nonExistingUser()
 boolean deleted = theDAO.deleteUser(u);
 assertDeleted("DB change", toDataSet(u));
 assertTrue("return value", deleted);
}

If you change anExistingUser() above to nonExistingUser(),
then assertDeleted, two lines below, will throw DBAssertionError.
The user instance returned by nonExistingUser() does not exist in the database,
hence theDAO.deleteUser(u) will fail to delete the equivalent entry
in the USERS table.

In conjunction with DBAssertionError, the log message below will appear in System.err, where 99 / john99 refers to the non-existing user.
The assertion error is explained
by the jdbdt-log-message/delta-assertion/errors/old-data section, indicating that
the (non-existing) user entry was expected to be deleted but was actually not.
For more details on the logging format, refer to this page.

<jdbdt-log-message ...>
 ...
 <delta-assertion>
 ...
 <errors>
 <old-data>
 <expected count="1">
 <row>
 <column java-type="java.lang.Integer" label="ID">99</column>
 <column java-type="java.lang.String" label="LOGIN">john99</column>
 <column java-type="java.lang.String" label="NAME">John Doe 99</column>
 <column java-type="java.lang.String" label="PASSWORD">doeit 99</column>
 <column java-type="java.lang.String" label="ROLE">REGULAR</column>
 <column java-type="java.sql.Date" label="CREATED">2016-01-01</column>
 </row>
 </expected>
 <actual count="0"/>
 </old-data>
 <new-data>
 <expected count="0"/>
 <actual count="0"/>
 </new-data>
 </errors>
 </delta-assertion>
</jdbdt-log-message>

 JDBDT

JDBDT

[image: src/site/markdown/images/github.png]Hosted at: GitHub [http://github.com/JDBDT]
[image: ../../../_images/License-MIT-yellow.svg]License: MIT [http://jdbdt.org/MIT_License.html]
[image: ../../../_images/jdbdt.svg]Maven Central [https://search.maven.org/#search%7Cga%7C1%7Corg.jdbdt]
[image: ../../../_images/jdbdt1.svg]GitHub release [https://github.com/JDBDT/jdbdt/releases]
[image: ../../../_images/jdbdt.png]Build status [https://travis-ci.org/JDBDT/jdbdt]
[image: ../../../_images/647d281hp1b8py3p.png]AppVeyor build status [https://ci.appveyor.com/project/edrdo/jdbdt]

About

JDBDT (Java DataBase Delta Testing) is an open-source Java library for
testing database applications. The library is designed for automation
of database setup and validation in test code.
JDBDT is compact and has no third-party library dependencies (it just uses the Java 8 SE API internally),
making it also easy and lightweight to integrate.

Compared to existing database testing frameworks, the main conceptual novelty
is the possibility of using δ-assertions.
For details, you may browse the reference documentation available in this site, along with the Javadoc for the JDBDT API and the JDBDT tutorial.

Contribute

The code is hosted at GitHub [https://github.com/JDBDT/jdbdt].
Please use the issue tracker [https://github.com/edrdo/JDBDT/issues]
to report bugs or propose new features. For other issues e-mail
delta _at_ jdbdt.org.

Installation

Prerequisite: JDBDT requires Java 8, it will not work
with earlier Java versions.

Maven Central

JDBDT is available from Maven Central [http://search.maven.org/#search%7Cga%7C1%7Cjdbdt].

Maven setup

<dependency>
	<groupId>org.jdbdt</groupId>
 <artifactId>jdbdt</artifactId>
 <version>1.4.2-SNAPSHOT</version>
</dependency>

Gradle setup

 compile 'org.jdbdt:jdbdt:1.4.2-SNAPSHOT'

Setup instructions for other build systems are available here .

GitHub

JDBDT release artifacts are also available
at GitHub [https://github.com/JDBDT/jdbdt/releases].

Snapshot builds

To compile and install the latest snapshot from scratch, use
the following commands:

git clone git@github.com:JDBDT/jdbdt.git
cd jdbdt
mvn install

Main features in a nutshell

API facade

The core functionality is exposed by a simple API facade.

import static org.jdbdt.JDBDT.*;

Data sources

Tables and queries
can be used as data sources in association to a database.

DB db = database("jdbc:myFaveDBEngine://myDB");

Table userTable =
 table("USER")
 .columns("ID", "LOGIN", "NAME", "PASSWORD", "CREATED")
 .build(db);

Query idQuery =
 select("LOGIN", "NAME")
 .from("USER")
 .where("ID = ?")
 .arguments(userId)
 .build(db);

Programmatic definition of data sets

Data sets are defined programmatically, for instance using data set builders,
without need to maintain external “data files”. Data sets can also be read from CSV files anyway if convenient.

DataSet data =
 builder(t)
 .sequence("ID", 1) // 1, 2, 3, ...
 .sequence("LOGIN", "harry", "mark", "john")
 .sequence("NAME", "Harry H", "Mark M", "John J")
 .sequence("PASSWORD", i -> "password " + i , 1)
 .random("CREATED", Date.valueOf("2015-01-01"), Date.valueOf("2015-12-31"))
 .generate(3) // generate 3 rows
 .sequence("LOGIN", i -> "guest_" + i, 4) // "user_4", "user_5", ...
 .sequence("NAME", i -> "Guest User " + i, 4) // "Guest User 4", ...
 .value("password", "samePasswordForAllGuests")
 .generate(6) // 6 more rows keeping ID sequence and CREATED random filler
 .data();

Database setup

Setup methods can be used to define database contents,
for instance to populate tables, clear them, setting & restoring save points, …

static Table theTable;
static DataSet theinitialStata;

@BeforeClass
public static void globalSetup() {
 theTable = ... ;
 theInitialData = ... ;
}

@Before
public void perTestSetup() {
 populateIfChanged(initialData);
}

δ-assertions

δ-assertions can be used to verify
database changes incrementally, in addition to standard
assertions for database state
or data set comparison.

@Test
public void testUserInsertion() {
 User uJohn = ...;
 DataSet newRow =
 data(theTable)
 .row(999, "john", "John", "jpass", Date.valueOf("2016-01-01"));
 sut.insertUser(uJohn);
 // Verify the insertion; assertion fails if other changes are detected
 assertInserted(newRow);
}

@Test
public void testHarmlessQuery() {
 User u = sut.getUser("john");
 ... // standard assertions
 assertUnchanged(theTable); // no delta, query is really harmless!
}

Logging

Assertions and setup operations can be logged onto (optionally compressed) XML files.

<jdbdt-log-message time="..." version="...">
...
 <delta-assertion>
 <expected>
 <old-data count="0"/>
 <new-data count="0"/>
 </expected>
 <errors>
 	 <old-data>
 <expected count="0"/>
 <actual count="1">
 <row>
 <column java-type="java.lang.String" label="LOGIN">linus</column>
 <column java-type="java.lang.String" label="NAME">Linus Torvalds</column>
 <column java-type="java.lang.String" label="PASSWORD">linux</column>
 <column java-type="java.sql.Date" label="CREATED">2015-01-01</column>
 </row>
 </actual>
 </old-data>
